Nevada State Science Standards Revision: Why NGSS?

Role of "New" Standards

What they all have in common:

- To update previous content and practices
- To increase depth of knowledge over breadth
- To include cognitive research developed over the past 20 years
- To increase problem solving and critical thinking
- To develop 21st century skills
- To help children become career or college ready
- To show natural connections between content areas

Building on the Past; Preparing for the Future

Conceptual Shifts in the NGSS

- 1. K–12 Science Education Should Reflect the Real World Interconnections in Science
- 2. Using all practices and crosscutting concepts to teach all core ideas all year
- 3. Science concepts build coherently across K-12
- 4. The NGSS Focus on Deeper Understanding and Application of Content
- 5. Integration of science and engineering
- 6. Coordination with Common Core State Standards

Three Dimensions Intertwined

What is new?

- Central role of scientific and engineering practices
- Organized around crosscutting concepts & core explanatory ideas
- 3. Organized in learning progressions

Framework for K-12 Science Education & Next Generation Science Standards (NGSS)

 Scientific and Engineering Practices NSES – Process Skills, Inquiry, and Nature of Science 	2. Crosscutting Concepts NSES – Unifying Concepts	3. Disciplinary Core Ideas NSES Science Content Adds Engineering and STEM
 Asking questions (for science) and defining problems (for engineering) Developing and using models Planning and carrying out investigations Analyzing and interpreting data Using mathematics and computational thinking Constructing explanations (for science) and designing solutions (for engineering) Engaging in argument from evidence Obtaining, evaluating, and communicating information 	 Patterns Cause and effect: Mechanism and explanation Scale, proportion, and quantity Systems and system models Energy and matter: Flows, cycles, and conservation Structure and function Stability and change Utilizes History of Science and Social and personal perspectives 	 Physical Sciences Life Sciences Earth and Space Sciences Engineering, Technology, and the Applications of Science

Structure of NGSS

- Components
 - Disciplinary Core Ideas
 - Cross Cutting Concepts
 - Science and Engineering Practice
- Connections
 - Content Clarification Statements
 - Assessment Boundaries (performance expectations)
 - Common Core State Standards (ELA & Math)

Disciplinary Core Ideas

Earth and Space Sciences

- ESS 1: Earth's place in the universe
- ESS 2: Earth's systems
- ESS 3: Earth and human activity
- Engineering, Technology and Applications of Sciences
- ETS 1: Engineering design
- ETS 2: Links among engineering, technology, science, and society

Disciplinary Core Ideas

Life Sciences

- LS 1: From molecules to organisms: Structures and processes
- LS 2: Ecosystems: Interactions, energy, and dynamics
- LS 3: Heredity: Inheritance and variation of traits
- LS 4: Biological evolution: Unity and diversity

Physical Sciences

- PS 1: Matter and its interactions
- PS 2: Motion and stability: Forces and interactions
- PS 3: Energy
- PS 4: Waves and their applications in technologies for information transfer

Crosscutting Concepts

- Patterns
- Cause and effect: Mechanism and explanation
- Scale, proportion, and quantity
- Systems and system models
- Energy and matter: Flows, cycles, and conservation
- Structure and function
- Stability and change

Science and Engineering Practices

- Asking questions (science) and defining problems (engineering)
- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data

- 5. Using mathematics and computational thinking
- Developing explanations (science) and designing solutions (engineering)
- 7. Engaging in argument
- 8. Obtaining, evaluating, and communicating information

a	S	÷	MS.PS- <u>SPM_Structure</u> and Properties of Matter					
ğ	n		MS.PS-SPM Structure and Properties of Matter					
ar	Ę		Students who demonstrate understanding can:					
Ξ	, E		a. Construct and use models to explain that atoms combine to form new substances of varying complexity in terms of the					
2	<u>5</u> —	í	number of atoms and repeating subunits. [Clarification Statement: Examples of atoms combining can include Hydrogen (H2) and Oxygen (O2) combining to					
£	be		form hydrogen peroxide (H ₂ O ₂) or water (H ₂ O).] [Assessment Boundary: Valence electrons and bonding energy are not addressed.]					
e	.X							
<u>с</u>	ш	_	Ine performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:					
			Scien	ce and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts		
<u>ر</u>			Developing	and Using Models	PS1.A: Structure and Properties of Matter	Patterns		
ndatior 3oxes			Modeling in 6–8 builds on K–5 and progresses to		 All substances are made from some 100 different types of 	Macroscopic patterns are related to the nature of		
	SS	Į	developing, i	using and revising models to explain, explore,	atoms, which combine with one another in various ways.	microscopic and atomic-level structure. Patterns in rates		
	×		 Use and/ 	or construct models to predict, explain,	thousands of atoms. (a)	information about natural and human designed		
	8		and/or collect data to test ideas about phenomena in natural or designed systems, including those		 Solids may be formed from molecules, or they may be 	systems. Patterns can be used to identify cause and		
20					extended structures with repeating subunits (e.g.,	effect relationships. Graphs and charts can be used to		
Щ			represer	iting inputs and outputs. (a)	crystais). (a)	Identify patterns in data. (a)		
			Connections	to other DCIs in this grade-level: MS.ESS-ESP,	MS.ESS-SS, MS.LS-MEOE			
			Articulation of DCIs across grade-levels: 3.IF, 5.SPM, HS.PS.SPM, HS.PS-NP, HS.PS-E					
			Common Core State Standards Connections: [Note: these connections will be made more explicit and complete in future draft releases]					
			W.5.2	Write informative/explanatory texts to examine	e a topic and convey ideas and information clearly.			
			W.6.1 Write arguments to support claims with clear reasons and relevant evidence.					
			W.7.1 Write arguments to support claims with clear reasons and relevant evidence.					
L			SL.5.4 Report on a topic or text or present an opinion, sequencing ideas logically and using appropriate facts and relevant, descriptive details to support main ideas or themes;					
Connectic	S		speak clearly at an understandable pace. St 6.4 Present claims and findings, sequencing ideas logically and using pertinent descriptions facts, and details to accentuate main ideas or themes: use appropriate even					
	×e		contact, adequate volume, and clear pronunciation.					
	80		SL.7.4	Present claims and findings, emphasizing salie	ent points in a focused, coherent manner with pertinent descriptio	ns, facts, details, and examples; use appropriate eve		
	_		contact, adequate volume, and clear pronunciation.					
			WHST.6-8.1 Write arguments focused on discipline-specific content.					
			RST.6-8.3 Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.					
			Mathematics	Model with mathematics				
			MP.8	Look for and express regularity in repeated rea	soning.			
			6.SP Develop understanding of statistical variability					
				Summarize and describe distributions				

CCSS ELA, Math and NGSS Practices

and collaborations

ELA

and English Language Arts

Based on work by Tina Chuek ell.stanford.edu

NVACSS & Nevada Business and Industry

- Equips students with skills that are necessary for all careers—within and beyond STEM fields. Students need the right foundation to tackle long-term and difficult issues that face our generation and future generations.
- Prepares students to enter the workforce with enhanced communication, problem-solving, and critical thinking skills as well as greater resilience—all essential skills for competing and succeeding in today's workforce.
- Students are required to provide evidence of their own learning, gain skills important for future employment such as communication, collaborate, and engage in inquiry, and systems-thinking.
- Helps students develop a sense of contextual understanding with regard to science knowledge and solutions, helping them to become better informed and well-equipped citizens of the world they will enter.
- Connects scientific principles to real-world situations, allowing for engaging and relevant content and instruction that clearly covers complicated topics.

Recommendations to School Districts Regarding the NVACSS - 2014 based on the NGSS

STOP TEACHING "INQUIRY" WITHOUT CONTENT or "CONTENT" WITHOUT INQUIRY:

<u>Do</u> engage students in using inquiry practices to deepen understanding of core science ideas in <u>current</u> state standards (NVACSS – 2014).

USE CAUTION WHEN MAKING CHANGES TO SCIENCE CONTENT IN THE CURRICULUM:

- Have a transition plan in place (created via districtwide collaboration)
- Purchase instructional materials (textbooks, kits, etc.) that align with the NVACSS

- DO INTEGRATE SCIENCE & ENGINEERING PRACTICES AND ENGINEERING CORE IDEAS:
- Get to know the <u>NRC Framework</u> esp. Chapters 1, 3, 8, 9 and 11;
- View archived NSTA webinars for each Practice; for Engineering; etc. (http://learningcenter.nsta.org/products/web_seminar_archive_sponsor.aspx)
- Redesign lessons so students use the Science and Engineering Practices to develop content understanding.
- Emphasis practices integral to the learning of science for all students.

DO INTEGRATE COMMON CORE LITERACY AND MATHEMATICS STANDARDS:

- Embrace Common Core Science Literacy Standards they are mirrored in NGSS Practices 7 and 8! (see Common Core ELA pp. 62-66 http://www.corestandards.org)
- Add complex informational text (not just textbooks!)
- Infuse grade-appropriate mathematics into science investigations (NGSS Practice 5)

Performance Expectations

Students who demonstrate understanding can:

- Evaluate data to explain resource availability and other environmental factors that affect carrying capacity of ecosystems.
- Design solutions for creating or maintaining the sustainability of local ecosystems.
- Construct arguments from evidence about the effects of natural biological or physical disturbances in terms of the time needed to reestablish a stable ecosystem and how the new system differs from the original system.
- Use evidence to construct explanations and design solutions for the impact of human activities on the environment and ways to sustain biodiversity and maintain the planet's natural capital.
- Provide evidence to support explanations of how elements and energy are conserved as they cycle through ecosystems and how organisms compete for matter and energy.

For More Information...

Please visit the following websites for science education resources:

•Nevada Department of Education –Science: <u>http://www.doe.nv.gov/APAC_Science</u>

•Nevada Next Generation Science Education:

http://www.nevadangse.net

•Next Generation Science Standards:

www.nextgenscience.org

